Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS Negl Trop Dis ; 16(11): e0010773, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36417454

RESUMO

BACKGROUND: To make progress towards malaria elimination, a highly effective vaccine targeting Plasmodium vivax is urgently needed. Evaluating the kinetics of natural antibody responses to vaccine candidate antigens after acute vivax malaria can inform the design of serological markers of exposure and vaccines. METHODOLOGY/PRINCIPAL FINDINGS: The responses of IgG antibodies to 9 P. vivax vaccine candidate antigens were evaluated in longitudinal serum samples from Brazilian individuals collected at the time of acute vivax malaria and 30, 60, and 180 days afterwards. Antigen-specific IgG correlations, seroprevalence, and half-lives were determined for each antigen using the longitudinal data. Antibody reactivities against Pv41 and PVX_081550 strongly correlated with each other at each of the four time points. The analysis identified robust responses in terms of magnitude and seroprevalence against Pv41 and PvGAMA at 30 and 60 days. Among the 8 P. vivax antigens demonstrating >50% seropositivity across all individuals, antibodies specific to PVX_081550 had the longest half-life (100 days; 95% CI, 83-130 days), followed by PvRBP2b (91 days; 95% CI, 76-110 days) and Pv12 (82 days; 95% CI, 64-110 days). CONCLUSION/SIGNIFICANCE: This study provides an in-depth assessment of the kinetics of antibody responses to key vaccine candidate antigens in Brazilians with acute vivax malaria. Follow-up studies are needed to determine whether the longer-lived antibody responses induced by natural infection are effective in controlling blood-stage infection and mediating clinical protection.


Assuntos
Imunoglobulina G , Vacinas , Humanos , Plasmodium vivax , Estudos Soroepidemiológicos , Formação de Anticorpos
2.
Trends Biochem Sci ; 47(12): 1038-1047, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35840518

RESUMO

Mutation in leucine-rich repeat (LRR) kinase 2 (LRRK2) is a common cause of Parkinson's disease (PD). Aberrant LRRK2 kinase activity is associated with disease pathogenesis and thus it is an attractive drug target for combating PD. Intense efforts in the past nearly two decades have focused on the development of small-molecule inhibitors of the kinase domain of LRRK2 and have identified potent kinase inhibitors. However, most LRRK2 kinase inhibitors have shown adverse effects; therefore, alternative-mechanism-based strategies are desperately needed. In this review, we discuss the new insights gleaned from recent cryoelectron microscope (cryo-EM) structures of LRRK2 towards understanding the mechanisms of actions of LRRK2 and explore the potential new therapeutic avenues.


Assuntos
Doença de Parkinson , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases , Mutação
3.
FASEB J ; 36(3): e22198, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35199390

RESUMO

GroES/GroEL is the only bacterial chaperone essential under all conditions, making it a potential antibiotic target. Rationally targeting ESKAPE GroES/GroEL as an antibiotic strategy necessitates studying their structure and function. Herein, we outline the structural similarities between Escherichia coli and ESKAPE GroES/GroEL and identify significant differences in intra- and inter-ring cooperativity, required in the refolding cycle of client polypeptides. Previously, we observed that one-half of ESKAPE GroES/GroEL family members could not support cell viability when each was individually expressed in GroES/GroEL-deficient E. coli cells. Cell viability was found to be dependent on the allosteric compatibility between ESKAPE and E. coli subunits within mixed (E. coli and ESKAPE) tetradecameric GroEL complexes. Interestingly, differences in allostery did not necessarily result in differences in refolding rate for a given homotetradecameric chaperonin. Characterization of ESKAPE GroEL allostery, ATPase, and refolding rates in this study will serve to inform future studies focused on inhibitor design and mechanism of action studies.


Assuntos
Sítio Alostérico , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
4.
Parkinsonism Relat Disord ; 89: 63-72, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34229155

RESUMO

INTRODUCTION: Missense variants and multiplications of the alpha-synuclein gene (SNCA) are established as rare causes of autosomal dominant forms of Parkinson's Disease (PD). METHODS: Two families of Turkish origins with PD were studied; the SNCA coding region was analyzed by Sanger sequencing, and by whole exome sequencing (WES) in the index patient of the first and the second family, respectively. Co-segregation studies and haplotype analysis across the SNCA locus were carried out. Functional studies included in vitro thioflavin-T aggregation assay and in silico structural modelling of the alpha-synuclein (α-syn) protein. RESULTS: We identified a novel heterozygous SNCA variant, c.215C > T (p.Thr72Met), segregating with PD in a total of four members in the two families. A shared haplotype across the SNCA locus was found among variant carriers, suggestive of a common ancestor. We next showed that the Thr72Met α-syn displays enhanced aggregation in-vitro, compared to the wild-type species. In silico analysis of a tetrameric α-syn structural model revealed that Threonine 72 lies in the tetrameric interface, and substitution with the much larger methionine residue could potentially destabilize the tetramer. CONCLUSION: We present clinical, genetic, and functional data supporting a causative role of the SNCA c.215C > T (p.Thr72Met) variant in familial PD. Testing for this variant in patients with PD, especially of Turkish origin, might detect additional carriers. Further functional analyses might offer new insights into the shared biochemical properties of the PD-causing SNCA missense variants, and how they lead to neurodegeneration.


Assuntos
Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , alfa-Sinucleína/genética , Feminino , Haplótipos , Humanos , Pessoa de Meia-Idade , Linhagem , Turquia
5.
mBio ; 12(1)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436430

RESUMO

As the GroES/GroEL chaperonin system is the only bacterial chaperone that is essential under all conditions, we have been interested in the development of GroES/GroEL inhibitors as potential antibiotics. Using Escherichia coli GroES/GroEL as a surrogate, we have discovered several classes of GroES/GroEL inhibitors that show potent antibacterial activity against both Gram-positive and Gram-negative bacteria. However, it remains unknown if E. coli GroES/GroEL is functionally identical to other GroES/GroEL chaperonins and hence if our inhibitors will function against other chaperonins. Herein we report our initial efforts to characterize the GroES/GroEL chaperonins from clinically significant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). We used complementation experiments in GroES/GroEL-deficient and -null E. coli strains to report on exogenous ESKAPE chaperone function. In GroES/GroEL-deficient (but not knocked-out) E. coli, we found that only a subset of the ESKAPE GroES/GroEL chaperone systems could complement to produce a viable organism. Surprisingly, GroES/GroEL chaperone systems from two of the ESKAPE pathogens were found to complement in E. coli, but only in the strict absence of either E. coli GroEL (P. aeruginosa) or both E. coli GroES and GroEL (E. faecium). In addition, GroES/GroEL from S. aureus was unable to complement E. coli GroES/GroEL under all conditions. The resulting viable strains, in which E. coligroESL was replaced with ESKAPE groESL, demonstrated similar growth kinetics to wild-type E. coli, but displayed an elongated phenotype (potentially indicating compromised GroEL function) at some temperatures. These results suggest functional differences between GroES/GroEL chaperonins despite high conservation of amino acid identity.IMPORTANCE The GroES/GroEL chaperonin from E. coli has long served as the model system for other chaperonins. This assumption seemed valid because of the high conservation between the chaperonins. It was, therefore, shocking to discover ESKAPE pathogen GroES/GroEL formed mixed-complex chaperonins in the presence of E. coli GroES/GroEL, leading to loss of organism viability in some cases. Complete replacement of E. coligroESL with ESKAPE groESL restored organism viability, but produced an elongated phenotype, suggesting differences in chaperonin function, including client specificity and/or refolding cycle rates. These data offer important mechanistic insight into these remarkable machines, and the new strains developed allow for the synthesis of homogeneous chaperonins for biochemical studies and to further our efforts to develop chaperonin-targeted antibiotics.


Assuntos
Chaperonina 10/genética , Chaperonina 60/genética , Escherichia coli/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Antibacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Enterobacter/efeitos dos fármacos , Enterobacter/genética , Enterobacter/metabolismo , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/metabolismo , Cinética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
6.
Bioorg Med Chem ; 28(22): 115710, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007545

RESUMO

In two previous studies, we identified compound 1 as a moderate GroEL/ES inhibitor with weak to moderate antibacterial activity against Gram-positive and Gram-negative bacteria including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, and SM101 Escherichia coli (which has a compromised lipopolysaccharide biosynthetic pathway making bacteria more permeable to drugs). Extending from those studies, we developed two series of analogs with key substructures resembling those of known antibacterials, nitroxoline (hydroxyquinoline moiety) and nifuroxazide/nitrofurantoin (bis-cyclic-N-acylhydrazone scaffolds). Through biochemical and cell-based assays, we identified potent GroEL/ES inhibitors that selectively blocked E. faecium, S. aureus, and E. coli proliferation with low cytotoxicity to human colon and intestine cells in vitro. Initially, only the hydroxyquinoline-bearing analogs were found to be potent inhibitors in our GroEL/ES-mediated substrate refolding assays; however, subsequent testing in the presence of an E. coli nitroreductase (NfsB) in situ indicated that metabolites of the nitrofuran-bearing analogs were potent GroEL/ES inhibitor pro-drugs. Consequently, this study has identified a new target of nitrofuran-containing drugs, and is the first reported instance of such a unique class of GroEL/ES chaperonin inhibitors. The intriguing results presented herein provide impetus for expanded studies to validate inhibitor mechanisms and optimize this antibacterial class using the respective GroEL/ES chaperonin systems and nitroreductases from E. coli and the ESKAPE bacteria.


Assuntos
Antibacterianos/farmacologia , Chaperonina 60/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nitrofuranos/farmacologia , Pró-Fármacos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Chaperonina 60/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nitrofuranos/síntese química , Nitrofuranos/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 29(13): 1665-1672, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31047750

RESUMO

Current treatments for Mycobacterium tuberculosis infections require long and complicated regimens that can lead to patient non-compliance, increasing incidences of antibiotic-resistant strains, and lack of efficacy against latent stages of disease. Thus, new therapeutics are needed to improve tuberculosis standard of care. One strategy is to target protein homeostasis pathways by inhibiting molecular chaperones such as GroEL/ES (HSP60/10) chaperonin systems. M. tuberculosis has two GroEL homologs: GroEL1 is not essential but is important for cytokine-dependent granuloma formation, while GroEL2 is essential for survival and likely functions as the canonical housekeeping chaperonin for folding proteins. Another strategy is to target the protein tyrosine phosphatase B (PtpB) virulence factor that M. tuberculosis secretes into host cells to help evade immune responses. In the present study, we have identified a series of GroEL/ES inhibitors that inhibit M. tuberculosis growth in liquid culture and biochemical function of PtpB in vitro. With further optimization, such dual-targeting GroEL/ES and PtpB inhibitors could be effective against all stages of tuberculosis - actively replicating bacteria, bacteria evading host cell immune responses, and granuloma formation in latent disease - which would be a significant advance to augment current therapeutics that primarily target actively replicating bacteria.


Assuntos
Chaperonina 60/uso terapêutico , Mycobacterium tuberculosis/patogenicidade , Tuberculose/tratamento farmacológico , Proteínas de Bactérias/metabolismo , Chaperonina 60/farmacologia , Humanos , Modelos Moleculares , Polifarmacologia
8.
Bioorg Med Chem Lett ; 29(9): 1106-1112, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30852084

RESUMO

All living organisms contain a unique class of molecular chaperones called 60 kDa heat shock proteins (HSP60 - also known as GroEL in bacteria). While some organisms contain more than one HSP60 or GroEL isoform, at least one isoform has always proven to be essential. Because of this, we have been investigating targeting HSP60 and GroEL chaperonin systems as an antibiotic strategy. Our initial studies focused on applying this antibiotic strategy for treating African sleeping sickness (caused by Trypanosoma brucei parasites) and drug-resistant bacterial infections (in particular Methicillin-resistant Staphylococcus aureus - MRSA). Intriguingly, during our studies we found that three known antibiotics - suramin, closantel, and rafoxanide - were potent inhibitors of bacterial GroEL and human HSP60 chaperonin systems. These findings prompted us to explore what other approved drugs, natural products, and known bioactive molecules might also inhibit HSP60 and GroEL chaperonin systems. Initial high-throughput screening of 3680 approved drugs, natural products, and known bioactives identified 161 hit inhibitors of the Escherichia coli GroEL chaperonin system (4.3% hit rate). From a purchased subset of 60 hits, 29 compounds (48%) re-confirmed as selective GroEL inhibitors in our assays, all of which were nearly equipotent against human HSP60. These findings illuminate the notion that targeting chaperonin systems might be a more common occurrence than we previously appreciated. Future studies are needed to determine if the in vivo modes of action of these approved drugs, natural products, and known bioactive molecules are related to GroEL and HSP60 inhibition.


Assuntos
Produtos Biológicos/química , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Rafoxanida/química , Salicilanilidas/química , Suramina/química , Produtos Biológicos/metabolismo , Chaperonina 10/antagonistas & inibidores , Chaperonina 60/antagonistas & inibidores , Escherichia coli/metabolismo , Humanos , Concentração Inibidora 50 , Dobramento de Proteína , Rafoxanida/metabolismo , Salicilanilidas/metabolismo , Suramina/metabolismo
9.
J Biol Chem ; 294(15): 5907-5913, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30796162

RESUMO

Mutation in leucine-rich repeat kinase 2 (LRRK2) is a common cause of familial Parkinson's disease (PD). Recently, we showed that a disease-associated mutation R1441H rendered the GTPase domain of LRRK2 catalytically less active and thereby trapping it in a more persistently "on" conformation. However, the mechanism involved and characteristics of this on conformation remained unknown. Here, we report that the Ras of complex protein (ROC) domain of LRRK2 exists in a dynamic dimer-monomer equilibrium that is oppositely driven by GDP and GTP binding. We also observed that the PD-associated mutations at residue 1441 impair this dynamic and shift the conformation of ROC to a GTP-bound-like monomeric conformation. Moreover, we show that residue Arg-1441 is critical for regulating the conformational dynamics of ROC. In summary, our results reveal that the PD-associated substitutions at Arg-1441 of LRRK2 alter monomer-dimer dynamics and thereby trap its GTPase domain in an activated state.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mutação de Sentido Incorreto , Doença de Parkinson , Multimerização Proteica , Substituição de Aminoácidos , Guanosina Difosfato/química , Guanosina Difosfato/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Domínios Proteicos
10.
FASEB J ; 33(4): 4814-4823, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30592623

RESUMO

Parkinson disease-associated mutations within the GTPase domain Ras of complex proteins (ROC) of leucine rich repeat kinase 2 (LRRK2) result in an abnormal over-activation of its kinase domain. However, the mechanisms involved remain unclear. Recent study has shown that LRRK2 G-domain cycles between monomeric and dimeric conformations upon binding to GTP or guanosine diphosphate, and that the Parkinson's disease (PD)-associated R1441C/G/H mutations impair the G-domain monomer-dimer dynamics and trap the G-domain in a constitutive monomeric conformation. That led us to question whether other disease-associated mutations in G-domain would also affect its conformation. Here, we report that another PD-associated N1437H mutation also impairs its monomer-dimer conformational dynamics and GTPase activity. In contrast with mutations at R1441, ROCN1437H was found to be locked in a stable dimeric conformation in solution and its GTPase activity was ∼4-fold lower than that of the wild-type. Furthermore, the N1437H mutation reduced the GTP binding affinity by ∼2.5-fold when compared with other pathogenic G-domain mutations. Moreover, ROCN1437H was found to have a slower GTP dissociation rate, indicating that N1437H might interrupt the nucleotide exchange cycle. Taken together, our data support that conformational dynamics is important for LRRK2 GTPase activity and that the N1437H mutation impairs GTPase activity by locking the ROC domain in a persistently dimeric state.-Huang, X., Wu, C., Park, Y., Long, X., Hoang, Q. Q., Liao, J. The Parkinson's disease-associated mutation N1437H impairs conformational dynamics in the G domain of LRRK2.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/genética , Western Blotting , Cromatografia em Gel , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Conformação Proteica
11.
Methods Mol Biol ; 1873: 293-304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30341618

RESUMO

Methods to assess the kinetic stability of proteins, particularly those that are aggregation prone, are very useful in establishing ligand induced stabilizing effects. Because aggregation prone proteins are by nature difficult to work with, most solution based methods are compromised by this inherent instability. Here, we describe a label-free method that examines the denaturation of immobilized proteins where the dynamic unfolded protein populations are captured and detected by chaperonin binding.


Assuntos
Desnaturação Proteica , Dobramento de Proteína , Proteínas/química , Temperatura , Técnicas Biossensoriais , Linhagem Celular , Análise de Dados , Cinética , Agregados Proteicos , Ligação Proteica , Proteínas/metabolismo , Software , Interface Usuário-Computador
12.
Int J Mol Sci ; 19(12)2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30562929

RESUMO

Small G-proteins are structurally-conserved modules that function as molecular on-off switches. They function in many different cellular processes with differential specificity determined by the unique effector-binding surfaces, which undergo conformational changes during the switching action. These switches are typically standalone monomeric modules that form transient heterodimers with specific effector proteins in the 'on' state, and cycle to back to the monomeric conformation in the 'off' state. A new class of small G-proteins called "Roco" was discovered about a decade ago; this class is distinct from the typical G-proteins in several intriguing ways. Their switch module resides within a polypeptide chain of a large multi-domain protein, always adjacent to a unique domain called COR, and its effector kinase often resides within the same polypeptide. As such, the mechanisms of action of the Roco G-proteins are likely to differ from those of the typical G-proteins. Understanding these mechanisms is important because aberrant activity in the human Roco protein LRRK2 is associated with the pathogenesis of Parkinson's disease. This review provides an update on the current state of our understanding of the Roco G-proteins and the prospects of targeting them for therapeutic purposes.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/metabolismo , Animais , Proteínas de Ligação ao GTP/genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia
13.
J Med Chem ; 61(23): 10651-10664, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30392371

RESUMO

We recently reported the identification of a GroEL/ES inhibitor (1, N-(4-(benzo[ d]thiazol-2-ylthio)-3-chlorophenyl)-3,5-dibromo-2-hydroxybenzamide) that exhibited in vitro antibacterial effects against Staphylococcus aureus comparable to vancomycin, an antibiotic of last resort. To follow up, we have synthesized 43 compound 1 analogs to determine the most effective functional groups of the scaffold for inhibiting GroEL/ES and killing bacteria. Our results identified that the benzothiazole and hydroxyl groups are important for inhibiting GroEL/ES-mediated folding functions, with the hydroxyl essential for antibacterial effects. Several analogs exhibited >50-fold selectivity indices between antibacterial efficacy and cytotoxicity to human liver and kidney cells in cell culture. We found that MRSA was not able to easily generate acute resistance to lead inhibitors in a gain-of-resistance assay and that lead inhibitors were able to permeate through established S. aureus biofilms and maintain their bactericidal effects.


Assuntos
Amidas/química , Amidas/farmacologia , Biofilmes/efeitos dos fármacos , Chaperonina 10/antagonistas & inibidores , Chaperonina 60/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Células HEK293 , Humanos , Staphylococcus aureus/crescimento & desenvolvimento
14.
J Med Chem ; 61(16): 7345-7357, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30060666

RESUMO

Extending from a study we recently published examining the antitrypanosomal effects of a series of GroEL/ES inhibitors based on a pseudosymmetrical bis-sulfonamido-2-phenylbenzoxazole scaffold, here, we report the antibiotic effects of asymmetric analogs of this scaffold against a panel of bacteria known as the ESKAPE pathogens ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). While GroEL/ES inhibitors were largely ineffective against K. pneumoniae, A. baumannii, P. aeruginosa, and E. cloacae (Gram-negative bacteria), many analogs were potent inhibitors of E. faecium and S. aureus proliferation (Gram-positive bacteria, EC50 values of the most potent analogs were in the 1-2 µM range). Furthermore, even though some compounds inhibit human HSP60/10 biochemical functions in vitro (IC50 values in the 1-10 µM range), many of these exhibited moderate to low cytotoxicity to human liver and kidney cells (CC50 values > 20 µM).


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Chaperonina 10/antagonistas & inibidores , Chaperonina 60/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/efeitos adversos , Proteínas de Bactérias/antagonistas & inibidores , Calorimetria/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chaperonina 10/química , Chaperonina 10/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Sulfonamidas/química , Tiofenos/química
15.
ACS Chem Biol ; 13(9): 2783-2793, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30063823

RESUMO

DJ-1 is a Parkinson's disease associated protein endowed with enzymatic, redox sensing, regulatory, chaperoning, and neuroprotective activities. Although DJ-1 has been vigorously studied for the past decade and a half, its exact role in the progression of the disease remains uncertain. In addition, little is known about the spatiotemporal regulation of DJ-1, or the biochemical basis explaining its numerous biological functions. Progress has been hampered by the lack of inhibitors with precisely known mechanisms of action. Herein, we have employed biophysical methodologies and X-ray crystallography to identify and to optimize a family of compounds inactivating the critical Cys106 residue of human DJ-1. We demonstrate these compounds are potent inhibitors of various activities of DJ-1 in vitro and in cell-based assays. This study reports a new family of DJ-1 inhibitors with a defined mechanism of action, and contributes toward the understanding of the biological function of DJ-1.


Assuntos
Doença de Parkinson/tratamento farmacológico , Proteína Desglicase DJ-1/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Descoberta de Drogas , Células HEK293 , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica/efeitos dos fármacos , Proteína Desglicase DJ-1/química , Proteína Desglicase DJ-1/metabolismo
17.
Proc Natl Acad Sci U S A ; 113(43): E6572-E6581, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791029

RESUMO

The transcription factor T-bet (Tbox protein expressed in T cells) is one of the master regulators of both the innate and adaptive immune responses. It plays a central role in T-cell lineage commitment, where it controls the TH1 response, and in gene regulation in plasma B-cells and dendritic cells. T-bet is a member of the Tbox family of transcription factors; however, T-bet coordinately regulates the expression of many more genes than other Tbox proteins. A central unresolved question is how T-bet is able to simultaneously recognize distant Tbox binding sites, which may be located thousands of base pairs away. We have determined the crystal structure of the Tbox DNA binding domain (DBD) of T-bet in complex with a palindromic DNA. The structure shows a quaternary structure in which the T-bet dimer has its DNA binding regions splayed far apart, making it impossible for a single dimer to bind both sites of the DNA palindrome. In contrast to most other Tbox proteins, a single T-bet DBD dimer binds simultaneously to identical half-sites on two independent DNA. A fluorescence-based assay confirms that T-bet dimers are able to bring two independent DNA molecules into close juxtaposition. Furthermore, chromosome conformation capture assays confirm that T-bet functions in the direct formation of chromatin loops in vitro and in vivo. The data are consistent with a looping/synapsing model for transcriptional regulation by T-bet in which a single dimer of the transcription factor can recognize and coalesce distinct genetic elements, either a promoter plus a distant regulatory element, or promoters on two different genes.


Assuntos
Cromatina/química , DNA/química , Genoma , Proteínas com Domínio T/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cromatina/metabolismo , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Elementos Facilitadores Genéticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Sequências Repetidas Invertidas , Camundongos , Modelos Moleculares , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Xenopus laevis
18.
Proc Natl Acad Sci U S A ; 113(34): 9587-92, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27482083

RESUMO

The aggregation of α-synuclein (aSyn) leading to the formation of Lewy bodies is the defining pathological hallmark of Parkinson's disease (PD). Rare familial PD-associated mutations in aSyn render it aggregation-prone; however, PD patients carrying wild type (WT) aSyn also have aggregated aSyn in Lewy bodies. The mechanisms by which WT aSyn aggregates are unclear. Here, we report that inflammation can play a role in causing the aggregation of WT aSyn. We show that activation of the inflammasome with known stimuli results in the aggregation of aSyn in a neuronal cell model of PD. The insoluble aggregates are enriched with truncated aSyn as found in Lewy bodies of the PD brain. Inhibition of the inflammasome enzyme caspase-1 by chemical inhibition or genetic knockdown with shRNA abated aSyn truncation. In vitro characterization confirmed that caspase-1 directly cleaves aSyn, generating a highly aggregation-prone species. The truncation-induced aggregation of aSyn is toxic to neuronal culture, and inhibition of caspase-1 by shRNA or a specific chemical inhibitor improved the survival of a neuronal PD cell model. This study provides a molecular link for the role of inflammation in aSyn aggregation, and perhaps in the pathogenesis of sporadic PD as well.


Assuntos
Caspase 1/genética , Inflamassomos/metabolismo , Corpos de Lewy/metabolismo , Neurônios/metabolismo , Agregados Proteicos/genética , alfa-Sinucleína/genética , Compostos de Alúmen/farmacologia , Caspase 1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Corpos de Lewy/efeitos dos fármacos , Corpos de Lewy/patologia , Lipopolissacarídeos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Nigericina/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Vitamina K 3/farmacologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , para-Aminobenzoatos/farmacologia
19.
Proc Natl Acad Sci U S A ; 113(34): 9593-8, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27482103

RESUMO

Multiple system atrophy (MSA) is a sporadic orphan neurodegenerative disorder. No treatment is currently available to slow down the aggressive neurodegenerative process, and patients die within a few years after disease onset. The cytopathological hallmark of MSA is the accumulation of alpha-synuclein (α-syn) aggregates in affected oligodendrocytes. Several studies point to α-syn oligomerization and aggregation as a mediator of neurotoxicity in synucleinopathies including MSA. C-terminal truncation by the inflammatory protease caspase-1 has recently been implicated in the mechanisms that promote aggregation of α-syn in vitro and in neuronal cell models of α-syn toxicity. We present here an in vivo proof of concept of the ability of the caspase-1 inhibitor prodrug VX-765 to mitigate α-syn pathology and to mediate neuroprotection in proteolipid protein α-syn (PLP-SYN) mice, a transgenic mouse model of MSA. PLP-SYN and age-matched wild-type mice were treated for a period of 11 wk with VX-765 or placebo. VX-765 prevented motor deficits in PLP-SYN mice compared with placebo controls. More importantly, VX-765 was able to limit the progressive toxicity of α-syn aggregation by reducing its load in the striatum of PLP-SYN mice. Not only did VX-765 reduce truncated α-syn, but it also decreased its monomeric and oligomeric forms. Finally, VX-765 showed neuroprotective effects by preserving tyrosine hydroxylase-positive neurons in the substantia nigra of PLP-SYN mice. In conclusion, our results suggest that VX-765, a drug that was well tolerated in a 6 wk-long phase II trial in patients with epilepsy, is a promising candidate to achieve disease modification in synucleinopathies by limiting α-syn accumulation.


Assuntos
Caspase 1/genética , Corpo Estriado/efeitos dos fármacos , Dipeptídeos/farmacologia , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Oligodendroglia/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , alfa-Sinucleína/genética , para-Aminobenzoatos/farmacologia , Animais , Caspase 1/metabolismo , Ensaios Clínicos como Assunto , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/genética , Proteólise , Transdução de Sinais , Substância Negra/metabolismo , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
20.
Biochemistry ; 54(28): 4342-53, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26115006

RESUMO

Quorum-quenching catalysts are of interest for potential application as biochemical tools for interrogating interbacterial communication pathways, as antibiofouling agents, and as anti-infective agents in plants and animals. Herein, the structure and function of AidC, an N-acyl-l-homoserine lactone (AHL) lactonase from Chryseobacterium, is characterized. Steady-state kinetics show that zinc-supplemented AidC is the most efficient wild-type quorum-quenching enzymes characterized to date, with a kcat/KM value of approximately 2 × 10(6) M(-1) s(-1) for N-heptanoyl-l-homoserine lactone. The enzyme has stricter substrate selectivity and significantly lower KM values (ca. 50 µM for preferred substrates) compared to those of typical AHL lactonases (ca. >1 mM). X-ray crystal structures of AidC alone and with the product N-hexanoyl-l-homoserine were determined at resolutions of 1.09 and 1.67 Å, respectively. Each structure displays as a dimer, and dimeric oligiomerization was also observed in solution by size-exclusion chromatography coupled with multiangle light scattering. The structures reveal two atypical features as compared to previously characterized AHL lactonases: a "kinked" α-helix that forms part of a closed binding pocket that provides affinity and enforces selectivity for AHL substrates and an active-site His substitution that is usually found in a homologous family of phosphodiesterases. Implications for the catalytic mechanism of AHL lactonases are discussed.


Assuntos
Hidrolases de Éster Carboxílico/química , Chryseobacterium/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Domínio Catalítico , Chryseobacterium/química , Chryseobacterium/fisiologia , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Percepção de Quorum , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...